Impaired mitochondria-dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance.
نویسندگان
چکیده
Mitochondria affect cerebrovascular tone by activation of mitochondrial ATP-sensitive K+ (K ATP) channels and generation of reactive oxygen species (ROS). Insulin resistance accompanying obesity causes mitochondrial dysfunction, but the consequences on the cerebral circulation have not been fully identified. We evaluated the mitochondrial effects of diazoxide, a putative mitochondrial K ATP channel activator, on cerebral arteries of Zucker obese (ZO) rats with insulin resistance and lean (ZL) controls. Diameter measurements showed diminished diazoxide-induced vasodilation in ZO compared with ZL rats. Maximal relaxation was 38 +/- 3% in ZL vs. 21 +/- 4% in ZO rats (P < 0.05). Iberiotoxin, a Ca2+-activated K+ channel inhibitor, or manganese(III) tetrakis(4-benzoic acid)porphyrin chloride, an SOD mimetic, or endothelial denudation diminished vasodilation to diazoxide, implicating Ca2+-activated K+ channels, ROS, and endothelial factors in vasodilation. Inhibition of nitric oxide synthase (NOS) in ZL rats diminished diazoxide-induced vasodilation in intact arteries, but vasodilation was unaffected in endothelium-denuded arteries. In contrast, NOS inhibition in ZO rats enhanced vasodilation in endothelium-denuded arteries, but intact arteries were unaffected, suggesting that activity of endothelial NOS was abolished, whereas factors derived from nonendothelial NOS promoted vasoconstriction. Fluorescence microscopy showed decreased mitochondrial depolarization, ROS production, and nitric oxide generation in response to diazoxide in ZO arteries. Protein and mRNA measurements revealed increased expression of endothelial NOS and SODs in ZO arteries. Thus, cerebrovascular dilation to mitochondria-derived factors involves integration of endothelial and smooth muscle mechanisms. Furthermore, mitochondria-mediated vasodilation was diminished in ZO rats due to impaired mitochondrial K(ATP) channel activation, diminished mitochondrial ROS generation, increased ROS scavenging, and abnormal NOS activity.
منابع مشابه
CALL FOR PAPERS Cardiovascular and Cerebrovascular Aging—New Mechanisms and Insights Diversity of mitochondria-dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin-resistant rats
Katakam PV, Gordon AO, Sure VN, Rutkai I, Busija DW. Diversity of mitochondria-dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin-resistant rats. Am J Physiol Heart Circ Physiol 307: H493–H503, 2014. First published June 14, 2014; doi:10.1152/ajpheart.00091.2014.—Mitochondrial depolarization following ATP-sensitive potassium (mitoKATP) channel ac...
متن کاملSelective resistance to vasoactive effects of insulin in muscle resistance arteries of obese Zucker (fa/fa) rats.
UNLABELLED Obesity is related to insulin resistance and hypertension, but the underlying mechanisms are unclear. Insulin exerts both vasodilator and vasoconstrictor effects on muscle resistance arteries, which may be differentially impaired in obesity. OBJECTIVES To investigate whether vasodilator and vasoconstrictor effects of insulin are impaired in muscle resistance arteries of obese rats ...
متن کاملReduced constrictor reactivity balances impaired vasodilation in the mesenteric circulation of the obese Zucker rat.
Obesity causes whole body insulin resistance and impaired vasodilation to nitric oxide (NO). Because NO is a major contributor to the regulation of mesenteric blood flow, the mesenteric circulation of obese animals is faced with reduced capacity to increase flow and increased demand for flow associated with elevated consumption of food. This study hypothesized that insulin resistance impairs NO...
متن کاملImpaired insulin-induced vasodilation in small coronary arteries of Zucker obese rats is mediated by reactive oxygen species.
Insulin resistance (IR) and associated hyperinsulinemia are major risk factors for coronary artery disease. Mechanisms linking hyperinsulinemia to coronary vascular dysfunction in IR are unclear. We evaluated insulin-induced vasodilation in isolated small coronary arteries (SCA; approximately 225 microm) of Zucker obese (ZO) and control Zucker lean (ZL) rats. Vascular responses to insulin (0.1-...
متن کاملInsulin resistance and impaired functional vasodilation in obese Zucker rats.
Individuals with metabolic syndrome exhibit insulin resistance and an attenuated functional vasodilatory response to exercise. We have shown that impaired functional vasodilation in obese Zucker rats (OZRs) is associated with enhanced thromboxane receptor (TP)-mediated vasoconstriction. We hypothesized that insulin resistance, hyperglycemia/hyperlipidemia, and the resultant ROS are responsible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 296 2 شماره
صفحات -
تاریخ انتشار 2009